Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The nitrate transporter (NRT) gene family in poplar.

Identifieur interne : 002454 ( Main/Exploration ); précédent : 002453; suivant : 002455

The nitrate transporter (NRT) gene family in poplar.

Auteurs : Hua Bai [Allemagne] ; Dejuan Euring ; Katharina Volmer ; Dennis Janz ; Andrea Polle

Source :

RBID : pubmed:23977227

Descripteurs français

English descriptors

Abstract

Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.

DOI: 10.1371/journal.pone.0072126
PubMed: 23977227
PubMed Central: PMC3747271


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The nitrate transporter (NRT) gene family in poplar.</title>
<author>
<name sortKey="Bai, Hua" sort="Bai, Hua" uniqKey="Bai H" first="Hua" last="Bai">Hua Bai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Euring, Dejuan" sort="Euring, Dejuan" uniqKey="Euring D" first="Dejuan" last="Euring">Dejuan Euring</name>
</author>
<author>
<name sortKey="Volmer, Katharina" sort="Volmer, Katharina" uniqKey="Volmer K" first="Katharina" last="Volmer">Katharina Volmer</name>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23977227</idno>
<idno type="pmid">23977227</idno>
<idno type="doi">10.1371/journal.pone.0072126</idno>
<idno type="pmc">PMC3747271</idno>
<idno type="wicri:Area/Main/Corpus">002491</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002491</idno>
<idno type="wicri:Area/Main/Curation">002491</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002491</idno>
<idno type="wicri:Area/Main/Exploration">002491</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The nitrate transporter (NRT) gene family in poplar.</title>
<author>
<name sortKey="Bai, Hua" sort="Bai, Hua" uniqKey="Bai H" first="Hua" last="Bai">Hua Bai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Euring, Dejuan" sort="Euring, Dejuan" uniqKey="Euring D" first="Dejuan" last="Euring">Dejuan Euring</name>
</author>
<author>
<name sortKey="Volmer, Katharina" sort="Volmer, Katharina" uniqKey="Volmer K" first="Katharina" last="Volmer">Katharina Volmer</name>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anion Transport Proteins (genetics)</term>
<term>Anion Transport Proteins (metabolism)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Organ Specificity (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Bark (genetics)</term>
<term>Plant Bark (metabolism)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Wood (genetics)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de regroupements (MeSH)</term>
<term>Bois (génétique)</term>
<term>Bois (métabolisme)</term>
<term>Famille multigénique (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Transporteurs d'anions (génétique)</term>
<term>Transporteurs d'anions (métabolisme)</term>
<term>Écorce (génétique)</term>
<term>Écorce (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Anion Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Anion Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Bark</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bois</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Transporteurs d'anions</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Bark</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Transporteurs d'anions</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Gene Expression Regulation, Plant</term>
<term>Multigene Family</term>
<term>Organ Specificity</term>
<term>Phylogeny</term>
<term>Promoter Regions, Genetic</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Famille multigénique</term>
<term>Phylogenèse</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'organe</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23977227</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The nitrate transporter (NRT) gene family in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>e72126</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0072126</ELocationID>
<Abstract>
<AbstractText>Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Euring</LastName>
<ForeName>Dejuan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Volmer</LastName>
<ForeName>Katharina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janz</LastName>
<ForeName>Dennis</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027321">Anion Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C078921">nitrate transporters</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027321" MajorTopicYN="N">Anion Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23977227</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0072126</ArticleId>
<ArticleId IdType="pii">PONE-D-13-20817</ArticleId>
<ArticleId IdType="pmc">PMC3747271</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2007 Apr;27(4):503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Aug;13(8):1090-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Dec;24(6):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):556-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(4):455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jun;52(3):689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12956537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2002 Dec;77(6):383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1997 Mar;61(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9106362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Nov;5(11):1529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8312738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Sep 18;138(6):1184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1989 Jan;215(2):326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2710102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Jul;97(13):5669-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23681587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Apr;15(2):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22480431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 May;23(5):1945-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Feb;235(2):311-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21904872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):424-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23530184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Feb;48(2):263-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Dec 20;271(51):32593-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Jul;31(7):1159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 1995 Nov;4(6):388-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7581519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 18;101(20):7833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15136740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Mar;44(3):304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Mar 12;72(5):705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8453665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2750-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Sep;45(9):1139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Jul;37(5):859-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9678581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22541711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):591-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 May;194(3):724-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Feb;62(4):1349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21193579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):488-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Oct;9(10):1859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 23;488(7412):531-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22864417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22227893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1500-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(2):514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23398541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(1):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1633-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20501909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 May 19;11:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21595879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2290-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17481610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):186-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22734437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Sep;63(5):739-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Jun;34(3):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9225857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Apr;45(4):386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jul;63(2):269-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Nov;30(11):1366-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jun;129(2):886-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):63-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):856-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18753286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Apr;62(7):2299-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Aug 25;11:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(17):6173-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Mar;73(6):941-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23216999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Jan;13(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22143240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2011 Aug;38(6):4023-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21110110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Sep 26;12:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21943393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Jun 15;18(6):927-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20627075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Apr;62(7):2319-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 06;5(12):e15289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21151904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Sep;35(9):1567-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22458810</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
<orgName>
<li>Université de Göttingen</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Euring, Dejuan" sort="Euring, Dejuan" uniqKey="Euring D" first="Dejuan" last="Euring">Dejuan Euring</name>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Volmer, Katharina" sort="Volmer, Katharina" uniqKey="Volmer K" first="Katharina" last="Volmer">Katharina Volmer</name>
</noCountry>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Bai, Hua" sort="Bai, Hua" uniqKey="Bai H" first="Hua" last="Bai">Hua Bai</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002454 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002454 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23977227
   |texte=   The nitrate transporter (NRT) gene family in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23977227" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020